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The Anthropic Principle (Weinberg)
versus the approach here

 |s interesting to cite this principle, because it is
an attempt to connect the existence of the
universe as we know it, with life in it, with a
bound on the vacuum energy density of the
present universe (VEDPU), since a big VEDPU

expands the present universe too fast and will
not allow galaxy formation and life.

* Problems with this idea: relies on our un-
derstanding of life to do this analysis.

e Question: what If instead of life we talk about
singularity free universe and what restrictions
this imposes on the VEDPU?, is this possible?.



Non singular cosmology and Iits

relation to vacuum energy density

Will be discussed in the context of the TWO MEASURES
THEORY (TMT), taking into account also possible quantum
corrections due to the zero point fluctuations and we will
find the remarkable result that a stable, non singular early
universe, in the framework of the so called EMERGENT
UNIVERSE SCENARIO is linked to a positive but not too
big Vacuum Energy Density for the present universe .

But similar excercise could be attempted for other theories,
that is whether the vacuum energy density TODAY is
constrained by the requirement of absence of singularty AS
THE UNIVERSE ORIGINATED.



We introduce 4 scalar fields in 4-D

Which will play an important geometrical
role, by the way, other authors have found

t

t

nat 4 scalar fields in 4-D can be used to

define a generally covariant mass term for

ne graviton . A much simpler use of four

scalars in 4D is to define a new MEASURE.



The Basic Idea of the Two
Measures Theory (TMT)

The gemeral structure of gensral coordinate invariant theories 15 taken usually a5
e =fL“-Tgrr-r. (1)

where g = det( gy, ). The introduction of /~g s required since d'z by itself is
not & sealar but the produst ~gd'z i3 a sealar. Inserting ./—g, which has the
transformation proparties of a density, produces & scalar action 5y, a5 definad by
Eq. (1), provided Ly 5 & scalar,

In principle, nothing prevents us from considering other densities nstead of
/=, Ona construction of such alternative *measure of integration,” iz obtained as
follows: given 4-sealars o, (@ =1,2, 3.4}, one can constroct the density

b = EJ'”h:"ﬂ'i--:lb-:-:ll !-:IJ.I Wiz !-:IJl'r'-'EEI-:. :F:'-:B_l.:l'r"'-:! |E:



One can conslder both contributions, and allowng thersfore both geometrical
afjacts to anter the theory and take as our action

S=jL|,,.-"—_gd":+fL¢{ru":r. (65)

Here Ly and L. are o independent. There 5 & good resson not to consider
notlinear terms in @ that mix @ with /=3, for example

7 v
appesr.
This is becanse § in Eq. (6) & invariant {up to the integral of a total divergenca)
under the infinftedimensional symmetry

':Iﬁ'a_":lﬁ'ﬂ"_fﬂ[l"i}: [E}

whera f_(L,] {2 an arbitrary function of Ly if Ly and Ly are , independent. Such
symmetry (up to the integral of a total divergenca) is ahsent if mixed terms [Lke
(7)) are prasant. Therefore (B is considered for the case when no dependence on
the messure fields (MF) appears in Ly ar Ly,



Softly Broken Conformal
Invariance, simple example

g, = -[L,.r.-'—_gd*;r—ff.iﬂ'dd;r.

Ly =Ulg),

—1 i
Ly=—H(T,q)+ =0 4680~ V(9),
he &

RT.g) =g RBuil), R.(T)=R.,,
R T =Tk =Tk, +Th T2 —Tire

LT T gL E= el 1T

M



In the variational prineple I'i,,gm., the messure falds scalars o, and the
“mattar”-sealar field ¢ are all to be treated as independent variables although the
varigtional principle may rasut n equations that allow us to solve some of thase
variahlas in tarms of athars.

For the case where the potential tarms 7 = V' = 0, we hava [ocal conformal

invarianoe
G — T2} g (14)
and 7, 15 transformed according to
¥a = e =Valp), (15)
b= = J{z)k, (16)

whare J(x] is the Jacohian of the transformation of the p. fields.
This will be a symmetry in the case U=V =01If

0= (17)

Matiea that J can be a local funetion of space-time, this can be arranged by par-
forming for the ¢, felds one of the (infinite| possible diffsomorphism in the internal
Vo SpECE,



spacial exponential form for the U7 and V' opotentials, Indeed, I we perform the
glohal seale transformation (§ = const |

G — € 0 s (18}
then (9} is invariant provided V(¢ and /(@) are of the form**
Vig) =™, Uig) = fae™™ (19)
and 2 I8 transformed acoording to
¥a = Aakas (20}
which means
& — det (A, = AD (21)
such that
A =g (22)
and
b p-=. )

4. Spontaneously Broken Scale Invariance



Now we will solve for the scalar

_ o
=V



A La =10, (24)
wheee A = e 8, pi8.9. 950, Since it is easy to check that A28,p, =
Sadp it fllows that det (A%) = &=@% £ 0 & # 0. Therafore f & # 0 we obtain
that &, Ls =0, or that

-1 1
by =T A0g) + 308,49,6V =M @
Constdering now the wariation with respact to ¢4 we obtain
—1 1 L .
b| —Rull)+ —¢uts | — =+ —qU (¢ gu. =0. | 31]
K 2 2
Solving for K =¢"' R, (T} from Eq. (31] and introducing in Eq. (253}, we obtam
M+ V(g) - 28 =g, (32
| v |
a canstraint that allows us to solve for y,
207 ()

To get the physical content of the theory, it s best conslder varlables that
have wel-definad dynamical interpretation. The original metric does not has &
nonzero canonical momenta, The fundamental varmable of the theory iIn the first-
arder formalism is the connection and its canonical moments i3 a funetion of J,.
givan by

Fus = X |34



and y given by Eq. (33). Interastingly enough, working with §,,, isthe same as going

tothe “Einsteln conformal frame.” In terms of §,, the non- Riemannian contribution

17, disappears from the equations. This s because the connection can be written
as the Christoffel symbel of the metrie §,,,. In terms of §,,,, the equations of motion

far the metric can be written then in the Einstain form {(we defins Ryul:g,,_ﬂ_: = A
Ricel tensor in terms of the bar metric = Ry, and R = §* Ry, |

Ruwifas) — %::qu?iﬂap_: = %T;Em_: : (33]
wheta
TR id) = ¢t - %gpm,, $ 20 + GuuVeg($) (36)
and
Vilé) = w#mﬂ’ + M) (37)

In terms of the metric §°F, the aquation of motion of the scalar field ¢ takes
the standard general-ralativity form

—m (7T ) + V6] =0, )

Matiee that if V + M =0, Vog =0 and V7 = 0 also, provided V' is finite and
[F = 0 there, This means the zero cosmalogieal constant state 3 achieved without
any sort of ine-tumcng, That 15, mdependently of whether we add to V' & constant



Effective Potential for Exponential
forms of U and V (scale invariance)

(u']" = 1]'3

Eﬂ:ﬂ*

vl =




A comment, before going on (then

we ignore this for the rest of talk )

In the expression for the effective potential

for the scalar field one can obtain instead

of strictly zero at the bottom a very small
vacuum energy density by saying that the
constant of integration M Is not perfectly
defined, but instead Is gaussian - distributed
with a very small width, then energy density at
bottom is proportional to (energy density in flat
region) X (width/average of M), may be justified
by wormhole theory.



B, Generation of Two Flat Regions after the
Introduction of a B® Term

Az we have seen, It I3 possible to obtain & medal that through a spontansous
breaking of scale invartance can give us a flat region, We want to obtain now two
fiat regions in our effective potential, A simple generalization of the action §p will
fix this. What one neads to do 15 stmply consider the addition of a scale invariant
term of the farm

St = [ (¢ Bun(T) V2. ()

The total action baing then § = Sp + Sp2. 3 In the first-order formalism, 8ps is
not only globally scals invariant but also locally seals invariant, that s conformally

The varation of the action with respect to ¢ gives now
— 1 1
Rutr}(T +?eiw‘—_g) + oy b -5 (B +U(9))V =000 =0, (45)

It 1= interesting to notice that i we contract this aguation with ¢4, the ¢ tarms
do net contribute, This means that the same walue for the sealar survature R iz
obtamed as in Sec. 2, f we express our result In terms of ¢, (s derivatives and
g, Salving the scalar curvaturs from this and nserting in the other e-ndepandent
aquation L, = M, we get 2Ll the same solution for the ratio of the messureas whech

was found in the case whers the ¢ tarma were shsant, ie, y =ﬁ=%'



metric J,,, given by

0
= | — =y — Zreh 47
T (ﬁjm fx 15 (47)
fuw defines now the “Einsten frame.” Equations (48] can now be exprassad in the
“Einstain form"
ﬁm‘%ﬂuu-ﬁ‘=%T:f$ [‘ia}
whare
T;f=x_§ﬁ(hm— ymr,r:r,ar"‘) $ 8 Vis, (19)
R 4U
Ve TR (30

Here it is satisfied that = R(T, g) + 44" H,08¢ -V = M, squation that expressad
in terms of §*F hecomes ;1H{r,g}+[x 2eeR) g B, ¢0.6 -V = M. This allows
us to solve for B and we get

B 1+r~:2e-y~”3#¢ﬂ»

Motice that if we express R in terms of ¢, 113 derivatives and ¢, the resuli

i the same as in the modal without the curvature squared term, this 5 not troe
anymare onee we axprass K in terms of ¢, its darivatives and Juv,

In any case, onee we insart (51) into (30}, we see that the effective potential {30)
wil depend on the derivatives of the scalar feld now. It acts a8 o normal scalar
fisld potential under the eonditions of slow rolling or low gradients and in the case
theaq:alar Iieldianm tha rqlnn!l-f+1"[|;l-} [I

Arrisa - PR -




Potential with 2 flat regions M<0
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For M>0, we can get a
“quintessential inflation” potential

2
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becond, for ssymptotically large but negative values of the scalar field, we have
1

Viglih — —0 ] — e | |54
dere

« Another flat region is also obtained for the
other extreme, the dilaton field goes to
plus infinity. If the constant of integration M
IS negative, there Is a local minimum at
zero for the effective potential, we will
consider this theory , but generalized
somewhat to allow for the effect of zero
point fluctuations, for this we consider first



IN more detalls the Einstein frame

we see that the original metric does not have a canonically conjugated momentum (this
turns out to be zero), in contrast, the canonically conjugated momentum to the conection
turns out to be a function exclusively of g, this Einstein metric is therefore a genuine
dynamical canonical variable, as opposed to the original metric. There is also a lagrangian
formulation of the theory which uses g,,, as we will see in the next section, what we can
call the action in the Einstein frame. In this frame we can quantize the theory for example
and consider contributions without reference to the original frame, thus possibly considering
breking the TMT structure of the theory through quantum effects, but such breaking will
be done "softly” through the introduction of a cosmological term only. Surpringly, the
remaining structure of the theory, reminiscent from the original TMT structure will be
enough to control the strength of this additional cosmological term once we demand that

the universe originated from a non singular and stable emergent state.



V. GENERALIZING THE MODEL TO INCLUDE EFFECTS OF ZERO POINT
FLUCTUATIONS

The effective energy-momentum tensor can be represented in a form like that of a perfect

fluid

lf"'IIJ:-}"- qr
X172 (46)
" — 1-af

here X' = 5§70 o0 5. This defines a pressure functional and an energy density functional.

T — (o4 Pty — P Where 1, =

The system of equations obtained after solving for v, working in the Einstein frame with
the metric gy, can be obtained from a "k-essence” type effective action, as it is standard in
treatments of theories with non linear kinetic tems or k-essence models[56]-[59]. The action

from which the classical equations follow is,

Eff—/\f J'd’l“

p=——X Vi (48)

R+ (6. R) an



Vo eR*+U
eff = (y — 2keR)?

where 1t 1s understood that,
2U(9)
=T
We have two possible formulations concerning R: Notice first that R and R are different
objects, the R is the Riemannian curvature scalar in the Einstein frame, while R is a different
object. This F will be treated in two different ways:

1. First order formalism for R. Here R is a lagrangian variable, determined as follows, R
that appear in the expression above for p can be obtained from the variation of the pressure
functional action above with respect to R, this gives exactly the expression for R that has
been solved already in terms of X, o, etc.

2. Second order formalism for H. R that appear in the action above is exactly the
expression for R that has been solved already in terms of X.o. etc. The second order

formalism can be obtained from the first order formalism by solving algebraically R from

the eq. obtained by variation of R . and inserting back into the action.



In contrast to the simplified models studied in literature[56]-[59], it is impossible here
to represent p (o, X; M) in a factorizable form like f?(gﬁ);ﬁ[X ). The scalar field effective
Lagrangian can be taken as a starting point for many considerations.
In particular, the quantization of the model can proceed from (47) and additional terms
could be generated by radiative corrections. We will focus only on a possible cosmological
term in the Einstein frame added (due to zero point fuctuations) to (47), which leads then

to the new action
i - 1 = |
Spa = [V [‘;R@ +p(6,R) - A (5)

This addition to the effective action leaves the equations of motion of the scalar field
unaffected, but the gravitational equations aquire a cosmological constant. Adding the A

term can be regarded as a redefinition of V¢ (6, X M)
Verp (0.R) — Vegp (0. R) + A (52)

As we will see the stability of the emerging Universe imposses interesting constraints on A
After introducing the A term, we get from the variation of R the same value of R, unaf-
fected by the new A term, but as one can easily see then R does not have the interpretation

of a curvature scalar in the original frame since it is unaffected by the new source of energy



ANALYSIS OF THE EMERGENT UNIVERSE SOLUTIONS

We now want to consider the detailed analysis of The Emerging Universe solutions and
in the next section their stability in the TMT scale invariant theory. We start considering

the cosmological solutions of the form (in the Einstein frame),

dr?

ds® = dt* — a[ﬂz(l —

+r2(d6? + sin®0de?)), & = (1) (53)




We will consider a scenario where the scalar field ¢ is moving in the extreme right region

¢ — o0, in this case the expressions for the energy density p and pressure p are given by,

p= goz + SBg-"'fi +C (54)
and
4. .
p= EQE —I-Bfﬁ4 —C (5

It is interesting to notice that all terms proportional to ¢* behave like "radiation”, since

Pis = E‘i:'i is satisfied. here the constants A, B and C are given by,

fo

R 56

fz -|-HEEf1 ' (J )

er’ ek’ .

HETETE A 7
2 2

C Ji Y (53)

T Af(Tt 2 f2 ) Af,

It will be convenient to "decompose” the constant A into two pieces,



Ae——L 4 (59)

A%

since as @ — —oc , Vg — AN Therefore A has the interesting interpretation of the
vacuum energy density in the ¢ — —oo vacuum. As we will see, it is remarkable that the
stability and existence of non singular emergent universe implies that AA > 0, and it is
bounded from above as well.

The equation that determines such static umverse a(t) = ag = constant, a =0, a = 0
oives rise to a restriction for qzlrg that have to satisfy the following equation in order to
guarantee that the universe be static, becaunse @ = 0 is proportional to p 4 3p, we must

require that p 4+ 3p = 0, which leads to

3Boy+ Aoy — C' =0, (60)

This equation leads to two roots, the first being



i VAZ+12BC - A
.l= 6.8 )

The second root is:

—A2+12BC - A
68 '

It is also interesting to see that if the discriminant is positive, the first solution has

05 =

(62)

automatically positive energy density, if we only consider cases where C' > 0, which is
required if we want the emerging solution to be able to turn into an inflationary solution
eventually. One can see that the condition p > 0 for the first solution reduces to the
inequality w > (1 — /1 —w)/2, where w = —12BC/A* > 0, since we must have 4 > 0,
otherwise we get a negative kinetic term during the inflationary period, and as we will see in
the next section, we must have that 5 < 0 from the stability of the solution, and as long as

the discriminant is positive, i.e. 0 < w < 1, it is always true that this inequality is satisfied.



STABILITY OF THE STATIC SOLUTION

We will now consider the perturbation equations. Considering small deviations of ¢ the
from the static emerging solution value ¢y and also considering the perturbations of the

scale factor a, we obtain, from Eq. (54)

0p = Adodd + 12Bd60 (63)

at the same time dp can be obtained from the perturbation of the Friedmann equation

N
B(E +H*) =kp (64)

and since we are perturbing a solution which is static, i.e., has H = 0, we obtain then

6 :
- a—gﬁa = Kkdp (65)

we also have the second order Friedmann equation

1+ a% + 2aa

—3 = kP (66)

For the static emerging solution, we have py = —pp/3, a = ag, so
2

2
;= —2kpy = g!{-pg = (okpo (67)
; :

=



where we have chosen to express our result in terms of {1y, detined by pg = (€4 — 1) po, which

for the emerging solution has the value {2y = 2. Using this in (65), we obtain

_3Qﬂpg

p

0p =

da (68)

and equating the values of dp as given by (63) and (68) we obtain a linear relation between

5;3 and da, which is,

&(‘EEJ = Dﬂ&ﬂ (69)
where
Dﬂ - BQgpﬂ . (TO}
apdo(A + 12B¢})

we now consider the perturbation of the eq. (66). In the right hand side of this equation

we consider that p = ({1 —1)p, with
0=a(1 - =), )

where,



U.;s=C+Bd*

and therefore, the perturbation of the eq. (66) leads to,

) .
_i;_|_2@ = —kdp = —kd(({2—1)p) (73)
ap L)

to evaluate this, we use (71), (72) and the expressions that relate the variations in @ and

b (69). Defining the "small” variable J as

alt) = agll+ ) (74)

we obtain,

26(t) + W2B(t) =0, (7!

where,
24 B ¢? G(C'—I-Br:':g)

0 — 3k + 2| 76
A+12¢2B 0o ’ | (76)

HTDE = QD Po

notice that the sum of the last two terms in the expression for W¢, that is —3k{)y + 2k



et 2 ¢ — ) J(CHBE) K.
vanish since (}y = 2, for the same reason, we have that Gp—n = 4, which brings us to
" 24 B ¢} o
HD = Qﬂ o - — 4], (i’ i')
A+12¢4:B

For the stability of the static solution, we need that W2 > 0, where ¢? is defined either
by E. (61) (62 = ¢2) or by E. (62) (62 = 62). If we take E. (62) (62 = ¢¢) and use this in

the above expression for WZ, we obtain,

(78)

w2 q 4y A2 +12BC
0T L T 2BO - A

to avoid negative kinetic terms during the slow roll phase that takes place following the
emergent phase, we must consider A > 0, so, we see that the second solution is unstable
and will not be considered further.

Now in the case of the first solution, E. (61) (QE, = Qf) then W2 becomes

—4/ A2+ 12BC
2y A2+ 12BC - A

I‘“VZ = QD o |V




so the condition of stability becomes 2/ A2 + 12BC—A < 0, or 2y A2 + 12BC < A, squaring

both sides and since A > 0, we get 12BC/A? < —3/4, which means B < 0, and therefore
e < 0, multiplying by —1, we obtain, 12(—B)C/A? > 3/4, replacing the values of A, B, C,

given by (56) we obtain the condition

AX >0, (80)

Now there is the condition that the discriminant be positive A* +12BC >0

1 fa
AN < : 81
12(—¢)k? [f2+FLEEff] | (81)
since A = [m%] > 0, B < 0, meaning that € < 0, we see that we obtain a positive
1

upper bound for the energy density of the vacuum as ¢ — —oc, which must be positive, but

not very big.



VIII. THE VACUUM STRUCTURE OF THE THEORY. EVOLUTION OF THE
UNIVERSE, FROM ITS NON SINGULAR ORIGINS TO ITS PRESENT SLOWLY
ACCELERATING STATE AT ¢ — —oc , CROSSING "BARRIERS”.

For the discussion of the vacuum structure of the theory, we start studying Vs for the
case of a constant field ¢, given by,

Lo (fre® +M)?
T 4er2(fre0 + M)? + fre?a?)

This is necessary, but not enough, since as we will see, the consideration of constant fields
¢ alone can lead to missleading conclusions, in some cases, the dependence of V, ;¢ on the
kinetic term can be crucial to see if and how we can achieve the crossing of an apparent
barrier.

For a constant field ¢ the limiting values of V,;; are (now that we added the constant A):

First, for asymptotically large positive values, ie. as a0 — oo, we have Vi —

B
4[frcgf12+fg]

Second, for asymptotically large but negative values of the scalar field, that is as agp —

+ A

—00 , we have: Vi — %—ig +A=AN.

In these two asymptotic regions (a¢ — oc and a¢p — —oc) an examination of the scalar



field equation reveals that a constant scalar field configuration is a solution of the equations,

as 1s of course expected from the flatness of the effective potential in these regions.

Notice that in all the above discussion it is fundamental that M £ 0. It M = 0 the
potential becomes just a flat one, V.5 = m}ﬂm + A everywhere (not only at high values
of ag).

Finally, there is a minimum at Vosp = Aif M < 0 . In summary, and if f; >0, 4 > 0,

we have that there is a hierarchy of vacua .

viflad — —o0) = AN < Vogp(min, M < 0) = A < Vopplad — o) =C (83)

where €' = - 0 +£E 77 +A = % A+ A. notice that we assume above that f; > 0 and

M < 0, but f; < 0and M > 0 would be indistinguishable from that situation, that is,

the important requirement is f;/M < 0. We could have a scenario where we start the

' ' i r ! 2 '
non singular emergent universe at ¢ — oo where Vi¢r(ag — o0) = m + A, which
i

then slow rolls, then inflates [22] and finally gets trapped in the local minimum with energy



density Vsp(min, M < 0) = A, that was the picture favored in [22]. while here we want to
argue that the most attractive and relevant description for the final state of our Universe is
realized after inflation in the flat region ¢ — —oc, since in this region the vacuum energy
density is positive and bounded from above, so its a good candidate for our present state of
the Universe. It remains to be seen howevere whether a smooth transition all the way from
¢ — 00 to ¢ — —oo is possible.
In order to discuss the possiblility of transition to ¢ — —cc . In our case, since we are
mterested in a local minimum between ¢ — oo or ¢ — —oc, we can take M of either sign,
Taking for definitness f; > 0, f; > 0, A > 0, € < 0, we see that there will be a point,
defined by ex?(f1e% + M)? + fo¢2¢ = 0 where the effective potential for a constant field ¢,
then V.¢s as given by (82), will spike to oo, go then down to —oc and then asymptotically
approach its possitive asymptotic value at ¢y — —oc. This has the appearence of a potential
barrier. However, this is deceptive, such barrier may exist for constant ¢, but can be avoided

by considering time dependence, say for no space dependence and @2 given by
A g P y Bl P P D" g A



which has a solution in the real domain for ¢ < 0. For this case R (which is not a
Riemannian curvature), as given by (44) diverges. In this case then
. eR*+U 1

‘eff = A= —+A=A)\ 85
I (v — 2keR)? * dek? * (85)

that is, for this value of ¢2, regardless of the value of the scalar field, the value of V,¢;
becomes degenerate with its value for constant and arbitrarily negative ¢, which is our
candidate vacuum for the present state of the Universe. Therefore there is no barrier that

prevents from us reaching arbitrarily negative ¢ from anv point in field space in this model.

IX. DISCUSSION, THE CREATION OF THE UNIVERSE AS A "THRESHOLD
EVENT” FOR ZERO PRESENT VACUUM ENERGY DENSITY

We have considered a non singular origin for the Universe starting from an Einstein static
Universe, the so called "emergent universe” scenario, in the framework of a theory which

uses two volume elements \/=gd*z and &d*z, where ® is a metric independent density, used



as an additional measure of mtegration. Also curvature, curvature square terms and for
scale invariance a dilaton field ¢ are considered in the action. The first order formalism

was applied. The integration of the equations of motion associated with the new measure
gives rise to the spontaneous symmetry breaking (5.5.B) of scale invariance (5.1.). After
5.5.B. of S.I., using the the Einstein frame metric, it is found that a non trivial potential
for the dilaton is generated. One could question the use of the Einstein frame metric g, in
contrast to the original metric g,, . In this respect, it is interesting to see the role of both
the original metric and that of the Einstein frame metric in a canonical approach to the first
order formalism. Here we see that the original metric does not have a canonically conjugated
momentum (this turns out to be zero), in contrast, the canonically conjugated momentum to
the conection turns out to be a function exclusively of g, this Einstein metric is therefore
a genuine dynamical canonical variable, as opposed to the original metric.

There is also a lagrangian formulation of the theory which uses g, what we can call
the action in the Einstein frame. In this frame we can quantize the theory for example
and consider contributions without reference to the original frame, thus possibly considering

breaking the TMT structure of the theory, but such breaking will be done "softly” through



the introduction of a cosmological term only. In previous studies, we have found that the
TMT structure of the theory, where neither the lagrangian Lithat couples to \/—g, or Lo,
that couples to & depend on the measure fields, is protected by an infinite dimensional
symmetry o, — @, + fa(L2), where f,(Ls) is an arbitrary function of Ly, The additional
cosmological term, introduced here in the Einstein frame, does not have a representation
of this form in the original frame, therefore breaking the TMT structure (therefore the
mnfinite dimensional symmetry would be also broken by quantum effects). Surpringly, the
remaining terms of the theory, reminiscent from the original TMT structure will be enough
to control the strength of this additional cosmological term once we demand that the universe
originated from a non singular and stable emergent state.
In the Einstein frame we argue that the cosmological term parametrizes the zero point
fluctuations.
The resulting effective potential for the dilaton contains two flat regions, for ¢ — o
relevant for the non singular origin of the Universe, followed by an inflationary phase and
then transition to ¢ — —oco, which in this paper we take as describing our present Universe,

An intermediate local minimum is obtained if f;/M < 0, the region as ¢ — oc has a higher



energy density than this local minimum and of course of the region ¢ — —oc, if A > 0 and

fo > 0. A > 0is also required for satisfactory slow roll in the inflationary region ¢ — ~o

(after the emergent phase). The dynamics of the scalar field becomes non linear and these
non linearities are instrumental in the stability of some of the emergent universe solutions,
which exists for a parameter range of values of the vacuum energy in © — —oc, which must
be positive but not very big, avoiding the extreme fine tuning required to keep the vacuum
energy density of the present universe small. A sort of solution of the Cosmological Constant
Problem. where an a priori arbitrary cosmological term is restricted by the consideration of
the nonsingular and stable emergent origin for the universe.

Notice then that the creation of the universe can be considered as a "threshold event”
for zero present vacuum energy density, that is a threshold event for AA = 0 and we can
learn what we can expect in this case by comparing with well known threshold events. For
example in particle physics, the process e™ 4+ e~ — p* + 7, has a cross section of the form
(ignoring the mass of the electron and considering the center of mass frame, E being the

center of mass energy of each of the colliding e or e7),






Other virtues of the model

 The late phase of the universe, with a
massless scalar field has been shown not
to have the 5th force problem in these
generic type of models for matter with
densities much higher than the vacuum
energy density (Infamous problem of
Quintessence models). E.G. & A.
Kaganovich, Annals of Physics, 323:866-
882,2008. e-Print: arXiv:0704.1998 [gr-qc]



Speculations now: 1. Creating an
Emergent Universe?

 One may ask the question: how is it possible to discuss
the "creation of the universe" in the context of the
"emergent universe"?. After all, the Emergent Universe
basic philosophy is that the universe had a past of
Infinite duration. However, that most simple notion of an
emergent universe with a past of infinite duration has
been recently challenged by Mithani and Vilenkin, at
least in the context of a special model. They have
shown that a completle stable emergent universe,
although completly stable classically, could be unstable
under a tunneling process to collapse. On the other
hand, an emergent universe can indeed be created from
nothing by a tunneling process as well.



2. Emergent universe as
Intermediate state

an emerging universe could last for a long time provided it

IS classically stable, that is where the constraints on the
cosmological constant for the late universe discussed here

come In. If it is not stable, the emergent universe will not

provide us with an appropriate "intermediate state“

connecting the creation of the universe with the present

universe. The existence of this stable intermediate state

provides in our picture the reason for the universe to prefer

a very small vacuum energy density at late times, since

universes that are created, but do not make use of the intermediate
classically stable emergent universe will almost immediately recollapse,
so they will not be "selected". Finally, it could be that we arrive to the
emergent solution not by quantum creation, but just by classical
evolution from something else, from here we go on to inflation.



Conclusions

o Scale invariant Two Measure model with
curvature square implies dilaton potential with
two flat regions, one for inflation, other for
present accelerated universe (e.g. Quint. Infl.).

 Arbitrary CC in Einstein frame controlled by non
singular and stable origin of universe, implies
VEDPU>0 and not big.

« Other features: No fifth force problem, possibility
of creating Universe gives zero VEDPU=0 as
threshold point.
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